ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.14625
36
0

VTarbel: Targeted Label Attack with Minimal Knowledge on Detector-enhanced Vertical Federated Learning

19 July 2025
Juntao Tan
Anran Li
Quanchao Liu
Peng Ran
Lan Zhang
    AAML
ArXiv (abs)PDFHTML
Main:26 Pages
14 Figures
Bibliography:4 Pages
6 Tables
Abstract

Vertical federated learning (VFL) enables multiple parties with disjoint features to collaboratively train models without sharing raw data. While privacy vulnerabilities of VFL are extensively-studied, its security threats-particularly targeted label attacks-remain underexplored. In such attacks, a passive party perturbs inputs at inference to force misclassification into adversary-chosen labels. Existing methods rely on unrealistic assumptions (e.g., accessing VFL-model's outputs) and ignore anomaly detectors deployed in real-world systems. To bridge this gap, we introduce VTarbel, a two-stage, minimal-knowledge attack framework explicitly designed to evade detector-enhanced VFL inference. During the preparation stage, the attacker selects a minimal set of high-expressiveness samples (via maximum mean discrepancy), submits them through VFL protocol to collect predicted labels, and uses these pseudo-labels to train estimated detector and surrogate model on local features. In attack stage, these models guide gradient-based perturbations of remaining samples, crafting adversarial instances that induce targeted misclassifications and evade detection. We implement VTarbel and evaluate it against four model architectures, seven multimodal datasets, and two anomaly detectors. Across all settings, VTarbel outperforms four state-of-the-art baselines, evades detection, and retains effective against three representative privacy-preserving defenses. These results reveal critical security blind spots in current VFL deployments and underscore urgent need for robust, attack-aware defenses.

View on arXiv
Comments on this paper