Optimal Transceiver Design in Over-the-Air Federated Distillation
- FedML

The rapid proliferation and growth of artificial intelligence (AI) has led to the development of federated learning (FL). FL allows wireless devices (WDs) to cooperatively learn by sharing only local model parameters, without needing to share the entire dataset. However, the emergence of large AI models has made existing FL approaches inefficient, due to the significant communication overhead required. In this paper, we propose a novel over-the-air federated distillation (FD) framework by synergizing the strength of FL and knowledge distillation to avoid the heavy local model transmission. Instead of sharing the model parameters, only the WDs' model outputs, referred to as knowledge, are shared and aggregated over-the-air by exploiting the superposition property of the multiple-access channel. We shall study the transceiver design in over-the-air FD, aiming to maximize the learning convergence rate while meeting the power constraints of the transceivers. The main challenge lies in the intractability of the learning performance analysis, as well as the non-convex nature and the optimization spanning the whole FD training period. To tackle this problem, we first derive an analytical expression of the convergence rate in over-the-air FD. Then, the closed-form optimal solutions of the WDs' transmit power and the estimator for over-the-air aggregation are obtained given the receiver combining strategy. Accordingly, we put forth an efficient approach to find the optimal receiver beamforming vector via semidefinite relaxation. We further prove that there is no optimality gap between the original and relaxed problem for the receiver beamforming design. Numerical results will show that the proposed over-the-air FD approach achieves a significant reduction in communication overhead, with only a minor compromise in testing accuracy compared to conventional FL benchmarks.
View on arXiv