ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.18398
82
0

Optimising Call Centre Operations using Reinforcement Learning: Value Iteration versus Proximal Policy Optimisation

24 July 2025
Kwong Ho Li
Wathsala Karunarathne
    OffRL
ArXiv (abs)PDFHTMLGithub
Main:10 Pages
4 Figures
3 Tables
Abstract

This paper investigates the application of Reinforcement Learning (RL) to optimise call routing in call centres to minimise client waiting time and staff idle time. Two methods are compared: a model-based approach using Value Iteration (VI) under known system dynamics, and a model-free approach using Proximal Policy Optimisation (PPO) that learns from experience. For the model-based approach, a theoretical model is used, while a simulation model combining Discrete Event Simulation (DES) with the OpenAI Gym environment is developed for model-free learning. Both models frame the problem as a Markov Decision Process (MDP) within a Skills-Based Routing (SBR) framework, with Poisson client arrivals and exponentially distributed service and abandonment times. For policy evaluation, random, VI, and PPO policies are evaluated using the simulation model. After 1,000 test episodes, PPO consistently achives the highest rewards, along with the lowest client waiting time and staff idle time, despite requiring longer training time.

View on arXiv
Comments on this paper