ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.19629
71
2

Quantum Reinforcement Learning by Adaptive Non-local Observables

25 July 2025
Hsin-Yi Lin
Samuel Yen-Chi Chen
Huan-Hsin Tseng
Shinjae Yoo
ArXiv (abs)PDFHTML
Main:5 Pages
7 Figures
Bibliography:1 Pages
Abstract

Hybrid quantum-classical frameworks leverage quantum computing for machine learning; however, variational quantum circuits (VQCs) are limited by the need for local measurements. We introduce an adaptive non-local observable (ANO) paradigm within VQCs for quantum reinforcement learning (QRL), jointly optimizing circuit parameters and multi-qubit measurements. The ANO-VQC architecture serves as the function approximator in Deep Q-Network (DQN) and Asynchronous Advantage Actor-Critic (A3C) algorithms. On multiple benchmark tasks, ANO-VQC agents outperform baseline VQCs. Ablation studies reveal that adaptive measurements enhance the function space without increasing circuit depth. Our results demonstrate that adaptive multi-qubit observables can enable practical quantum advantages in reinforcement learning.

View on arXiv
Comments on this paper