ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.20356
128
6
v1v2v3v4 (latest)

Detecting Visual Information Manipulation Attacks in Augmented Reality: A Multimodal Semantic Reasoning Approach

27 July 2025
Yanming Xiu
M. Gorlatova
ArXiv (abs)PDFHTMLGithub (1★)
Main:9 Pages
7 Figures
Bibliography:2 Pages
4 Tables
Abstract

The virtual content in augmented reality (AR) can introduce misleading or harmful information, leading to semantic misunderstandings or user errors. In this work, we focus on visual information manipulation (VIM) attacks in AR, where virtual content changes the meaning of real-world scenes in subtle but impactful ways. We introduce a taxonomy that categorizes these attacks into three formats: character, phrase, and pattern manipulation, and three purposes: information replacement, information obfuscation, and extra wrong information. Based on the taxonomy, we construct a dataset, AR-VIM, which consists of 452 raw-AR video pairs spanning 202 different scenes, each simulating a real-world AR scenario. To detect the attacks in the dataset, we propose a multimodal semantic reasoning framework, VIM-Sense. It combines the language and visual understanding capabilities of vision-language models (VLMs) with optical character recognition (OCR)-based textual analysis. VIM-Sense achieves an attack detection accuracy of 88.94% on AR-VIM, consistently outperforming vision-only and text-only baselines. The system achieves an average attack detection latency of 7.07 seconds in a simulated video processing framework and 7.17 seconds in a real-world evaluation conducted on a mobile Android AR application.

View on arXiv
Comments on this paper