106

PVD-ONet: A Multi-scale Neural Operator Method for Singularly Perturbed Boundary Layer Problems

Main:31 Pages
10 Figures
Bibliography:2 Pages
3 Tables
Appendix:1 Pages
Abstract

Physics-informed neural networks and Physics-informed DeepONet excel in solving partial differential equations; however, they often fail to converge for singularly perturbed problems. To address this, we propose two novel frameworks, Prandtl-Van Dyke neural network (PVD-Net) and its operator learning extension Prandtl-Van Dyke Deep Operator Network (PVD-ONet), which rely solely on governing equations without data. To address varying task-specific requirements, both PVD-Net and PVD-ONet are developed in two distinct versions, tailored respectively for stability-focused and high-accuracy modeling. The leading-order PVD-Net adopts a two-network architecture combined with Prandtl's matching condition, targeting stability-prioritized scenarios. The high-order PVD-Net employs a five-network design with Van Dyke's matching principle to capture fine-scale boundary layer structures, making it ideal for high-accuracy scenarios. PVD-ONet generalizes PVD-Net to the operator learning setting by assembling multiple DeepONet modules, directly mapping initial conditions to solution operators and enabling instant predictions for an entire family of boundary layer problems without retraining. Numerical experiments on various models show that our proposed methods consistently outperform existing baselines under various error metrics, thereby offering a powerful new approach for multi-scale problems.

View on arXiv
Comments on this paper