ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.21709
40
0

Adaptive Prior Scene-Object SLAM for Dynamic Environments

29 July 2025
Haolan Zhang
Thanh Nguyen Canh
Chenghao Li
Nak Young Chong
ArXiv (abs)PDFHTML
Main:4 Pages
4 Figures
Bibliography:2 Pages
Abstract

Visual Simultaneous Localization and Mapping (SLAM) plays a vital role in real-time localization for autonomous systems. However, traditional SLAM methods, which assume a static environment, often suffer from significant localization drift in dynamic scenarios. While recent advancements have improved SLAM performance in such environments, these systems still struggle with localization drift, particularly due to abrupt viewpoint changes and poorly characterized moving objects. In this paper, we propose a novel scene-object-based reliability assessment framework that comprehensively evaluates SLAM stability through both current frame quality metrics and scene changes relative to reliable reference frames. Furthermore, to tackle the lack of error correction mechanisms in existing systems when pose estimation becomes unreliable, we employ a pose refinement strategy that leverages information from reliable frames to optimize camera pose estimation, effectively mitigating the adverse effects of dynamic interference. Extensive experiments on the TUM RGB-D datasets demonstrate that our approach achieves substantial improvements in localization accuracy and system robustness under challenging dynamic scenarios.

View on arXiv
Comments on this paper