
Pancreatic cancer is projected to be the second-deadliest cancer by 2030, making early detection critical. Intraductal papillary mucinous neoplasms (IPMNs), key cancer precursors, present a clinical dilemma, as current guidelines struggle to stratify malignancy risk, leading to unnecessary surgeries or missed diagnoses. Here, we developed Cyst-X, an AI framework for IPMN risk prediction trained on a unique, multi-center dataset of 1,461 MRI scans from 764 patients. Cyst-X achieves significantly higher accuracy (AUC = 0.82) than both the established Kyoto guidelines (AUC = 0.75) and expert radiologists, particularly in correct identification of high-risk lesions. Clinically, this translates to a 20% increase in cancer detection sensitivity (87.8% vs. 64.1%) for high-risk lesions. We demonstrate that this performance is maintained in a federated learning setting, allowing for collaborative model training without compromising patient privacy. To accelerate research in early pancreatic cancer detection, we publicly release the Cyst-X dataset and models, providing the first large-scale, multi-center MRI resource for pancreatic cyst analysis.
View on arXiv