119
v1v2v3 (latest)

Semantic Chain-of-Trust: Autonomous Trust Orchestration for Collaborator Selection via Hypergraph-Aided Agentic AI

Main:6 Pages
6 Figures
Bibliography:1 Pages
Abstract

The effective completion of tasks in collaborative systems hinges on task-specific trust evaluations of potential devices for distributed collaboration. Due to independent operation of devices involved, dynamic evolution of their mutual relationships, and complex situation-related impact on trust evaluation, effectively assessing devices' trust for collaborator selection is challenging. To overcome this challenge, we propose a semantic chain-of-trust model implemented with agentic AI and hypergraphs for supporting effective collaborator selection. We first introduce a concept of semantic trust, specifically designed to assess collaborators along multiple semantic dimensions for a more accurate representation of their trustworthiness. To facilitate intelligent evaluation, an agentic AI system is deployed on each device, empowering it to autonomously perform necessary operations, including device state detection, trust-related data collection, semantic extraction, task-specific resource evaluation, to derive a semantic trust representation for each collaborator. In addition, each device leverages a hypergraph to dynamically manage potential collaborators according to different levels of semantic trust, enabling fast one-hop collaborator selection. Furthermore, adjacent trusted devices autonomously form a chain through the hypergraph structure, supporting multi-hop collaborator selection. Experimental results demonstrate that the proposed semantic chain-of-trust achieves 100\% accuracy in trust evaluation based on historical collaborations, enabling intelligent, resource-efficient, and precise collaborator selection.

View on arXiv
Comments on this paper