150
v1v2 (latest)

Evolutionary Generative Optimization: Towards Fully Data-Driven Evolutionary Optimization via Generative Learning

Main:11 Pages
18 Figures
Bibliography:4 Pages
5 Tables
Appendix:14 Pages
Abstract

Recent advances in data-driven evolutionary algorithms (EAs) have demonstrated the potential of leveraging historical data to improve optimization accuracy and adaptability. Despite these advancements, existing methods remain reliant on handcrafted process-level operators. In contrast, Evolutionary Generative Optimization (EvoGO) is a fully data-driven framework designed from the objective level, enabling autonomous learning of the entire search process. EvoGO streamlines the evolutionary optimization process into three stages: data preparation, model training, and population generation. The data preparation stage constructs a pairwise dataset to enrich training diversity without incurring additional evaluation costs. During model training, a tailored generative model learns to transform inferior solutions into superior ones. In the population generation stage, EvoGO replaces traditional reproduction operators with a scalable and parallelizable generative mechanism. Extensive experiments on numerical benchmarks, classical control problems, and high-dimensional robotic tasks demonstrate that EvoGO consistently converges within merely 10 generations and substantially outperforms a wide spectrum of optimization approaches, including traditional EAs, Bayesian optimization, and reinforcement learning based methods. Code is available at:this https URL

View on arXiv
Comments on this paper