ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.00568
28
0

CoProU-VO: Combining Projected Uncertainty for End-to-End Unsupervised Monocular Visual Odometry

1 August 2025
Jingchao Xie
Oussema Dhaouadi
Weirong Chen
Johannes Meier
Jacques Kaiser
Daniel Cremers
ArXiv (abs)PDFHTML
Main:24 Pages
11 Figures
Bibliography:3 Pages
8 Tables
Abstract

Visual Odometry (VO) is fundamental to autonomous navigation, robotics, and augmented reality, with unsupervised approaches eliminating the need for expensive ground-truth labels. However, these methods struggle when dynamic objects violate the static scene assumption, leading to erroneous pose estimations. We tackle this problem by uncertainty modeling, which is a commonly used technique that creates robust masks to filter out dynamic objects and occlusions without requiring explicit motion segmentation. Traditional uncertainty modeling considers only single-frame information, overlooking the uncertainties across consecutive frames. Our key insight is that uncertainty must be propagated and combined across temporal frames to effectively identify unreliable regions, particularly in dynamic scenes. To address this challenge, we introduce Combined Projected Uncertainty VO (CoProU-VO), a novel end-to-end approach that combines target frame uncertainty with projected reference frame uncertainty using a principled probabilistic formulation. Built upon vision transformer backbones, our model simultaneously learns depth, uncertainty estimation, and camera poses. Consequently, experiments on the KITTI and nuScenes datasets demonstrate significant improvements over previous unsupervised monocular end-to-end two-frame-based methods and exhibit strong performance in challenging highway scenes where other approaches often fail. Additionally, comprehensive ablation studies validate the effectiveness of cross-frame uncertainty propagation.

View on arXiv
Comments on this paper