ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.01219
207
0

Eigen Neural Network: Unlocking Generalizable Vision with Eigenbasis

2 August 2025
Anzhe Cheng
Chenzhong Yin
Mingxi Cheng
Shukai Duan
Shahin Nazarian
Paul Bogdan
ArXiv (abs)PDFHTMLGithub (1★)
Main:7 Pages
7 Figures
Bibliography:2 Pages
8 Tables
Appendix:3 Pages
Abstract

The remarkable success of Deep Neural Networks(DNN) is driven by gradient-based optimization, yet this process is often undermined by its tendency to produce disordered weight structures, which harms feature clarity and degrades learning dynamics. To address this fundamental representational flaw, we introduced the Eigen Neural Network (ENN), a novel architecture that reparameterizes each layer's weights in a layer-shared, learned orthonormal eigenbasis. This design enforces decorrelated, well-aligned weight dynamics axiomatically, rather than through regularization, leading to more structured and discriminative feature representations. When integrated with standard BP, ENN consistently outperforms state-of-the-art methods on large-scale image classification benchmarks, including ImageNet, and its superior representations generalize to set a new benchmark in cross-modal image-text retrieval. Furthermore, ENN's principled structure enables a highly efficient, backpropagation-free(BP-free) local learning variant, ENN-ℓ\ellℓ. This variant not only resolves BP's procedural bottlenecks to achieve over 2×\times× training speedup via parallelism, but also, remarkably, surpasses the accuracy of end-to-end backpropagation. ENN thus presents a new architectural paradigm that directly remedies the representational deficiencies of BP, leading to enhanced performance and enabling a more efficient, parallelizable training regime.

View on arXiv
Comments on this paper