ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.01227
112
0
v1v2 (latest)

Enhancing Multi-view Open-set Learning via Ambiguity Uncertainty Calibration and View-wise Debiasing

2 August 2025
Zihan Fang
Zhiyong Xu
Lan Du
Shide Du
Zhiling Cai
Shiping Wang
ArXiv (abs)PDFHTMLGithub
Main:8 Pages
7 Figures
Bibliography:1 Pages
3 Tables
Abstract

Existing multi-view learning models struggle in open-set scenarios due to their implicit assumption of class completeness. Moreover, static view-induced biases, which arise from spurious view-label associations formed during training, further degrade their ability to recognize unknown categories. In this paper, we propose a multi-view open-set learning framework via ambiguity uncertainty calibration and view-wise debiasing. To simulate ambiguous samples, we design O-Mix, a novel synthesis strategy to generate virtual samples with calibrated open-set ambiguity uncertainty. These samples are further processed by an auxiliary ambiguity perception network that captures atypical patterns for improved open-set adaptation. Furthermore, we incorporate an HSIC-based contrastive debiasing module that enforces independence between view-specific ambiguous and view-consistent representations, encouraging the model to learn generalizable features. Extensive experiments on diverse multi-view benchmarks demonstrate that the proposed framework consistently enhances unknown-class recognition while preserving strong closed-set performance.

View on arXiv
Comments on this paper