145

LaMPE: Length-aware Multi-grained Position Encoding for Adaptive Long-context Scaling Without Training

Main:7 Pages
9 Figures
Bibliography:2 Pages
5 Tables
Appendix:4 Pages
Abstract

Large language models (LLMs) experience significant performance degradation when the input exceeds the pretraining context window, primarily due to the out-of-distribution (OOD) behavior of Rotary Position Embedding (RoPE). Recent studies mitigate this problem by remapping OOD positions into the in-distribution range with fixed mapping strategies, ignoring the dynamic relationship between input length and the model's effective context window. To this end, we propose Length-aware Multi-grained Positional Encoding (LaMPE), a training-free method that fully utilizes the model's effective context window for adaptive long-context scaling in LLMs. Motivated by the left-skewed frequency distribution of relative positions, LaMPE establishes a dynamic relationship between mapping length and input length through a parametric scaled sigmoid function to adaptively allocate positional capacity across varying input lengths. Meanwhile, LaMPE devises a novel multi-grained attention mechanism that strategically allocates positional resolution across different sequence regions to capture both fine-grained locality and long-range dependencies. Our method can be seamlessly applied to a wide range of RoPE-based LLMs without training. Extensive experiments on three representative LLMs across five mainstream long-context benchmarks demonstrate that LaMPE achieves significant performance improvements compared to existing length extrapolation methods. The code will be released at this https URL.

View on arXiv
Comments on this paper