ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.02386
160
0
v1v2 (latest)

Enhancing Object Discovery for Unsupervised Instance Segmentation and Object Detection

4 August 2025
Xingyu Feng
Hebei Gao
Hong Li
ArXiv (abs)PDFHTMLGithub
Main:8 Pages
9 Figures
Bibliography:4 Pages
10 Tables
Appendix:4 Pages
Abstract

We propose Cut-Once-and-LEaRn (COLER), a simple approach for unsupervised instance segmentation and object detection. COLER first uses our developed CutOnce to generate coarse pseudo labels, then enables the detector to learn from these masks. CutOnce applies Normalized Cut (NCut) only once and does not rely on any clustering methods (e.g., K-Means), but it can generate multiple object masks in an image. Our work opens a new direction for NCut algorithm in multi-object segmentation. We have designed several novel yet simple modules that not only allow CutOnce to fully leverage the object discovery capabilities of self-supervised model, but also free it from reliance on mask post-processing. During training, COLER achieves strong performance without requiring specially designed loss functions for pseudo labels, and its performance is further improved through self-training. COLER is a zero-shot unsupervised model that outperforms previous state-of-the-art methods on multiple benchmarks. We believe our method can help advance the field of unsupervised object localization. Code is available at:this https URL.

View on arXiv
Comments on this paper