ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.02931
122
0

Can LLMs Generate High-Quality Task-Specific Conversations?

4 August 2025
Shengqi Li
Amarnath Gupta
    LM&MA
ArXiv (abs)PDFHTML
Main:7 Pages
8 Figures
Bibliography:3 Pages
4 Tables
Appendix:3 Pages
Abstract

This paper introduces a parameterization framework for controlling conversation quality in large language models. We explore nine key parameters across six dimensions that enable precise specification of dialogue properties. Through experiments with state-of-the-art LLMs, we demonstrate that parameter-based control produces statistically significant differences in generated conversation properties. Our approach addresses challenges in conversation generation, including topic coherence, knowledge progression, character consistency, and control granularity. The framework provides a standardized method for conversation quality control with applications in education, therapy, customer service, and entertainment. Future work will focus on implementing additional parameters through architectural modifications and developing benchmark datasets for evaluation.

View on arXiv
Comments on this paper