ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.03073
73
0

Nexus-INR: Diverse Knowledge-guided Arbitrary-Scale Multimodal Medical Image Super-Resolution

5 August 2025
Bo Zhang
JianFei Huo
Zheng Zhang
Wufan Wang
Hui Gao
Xiangyang Gong
Wendong Wang
    SupR
ArXiv (abs)PDFHTML
Main:7 Pages
6 Figures
Bibliography:2 Pages
5 Tables
Abstract

Arbitrary-resolution super-resolution (ARSR) provides crucial flexibility for medical image analysis by adapting to diverse spatial resolutions. However, traditional CNN-based methods are inherently ill-suited for ARSR, as they are typically designed for fixed upsampling factors. While INR-based methods overcome this limitation, they still struggle to effectively process and leverage multi-modal images with varying resolutions and details. In this paper, we propose Nexus-INR, a Diverse Knowledge-guided ARSR framework, which employs varied information and downstream tasks to achieve high-quality, adaptive-resolution medical image super-resolution. Specifically, Nexus-INR contains three key components. A dual-branch encoder with an auxiliary classification task to effectively disentangle shared anatomical structures and modality-specific features; a knowledge distillation module using cross-modal attention that guides low-resolution modality reconstruction with high-resolution reference, enhanced by self-supervised consistency loss; an integrated segmentation module that embeds anatomical semantics to improve both reconstruction quality and downstream segmentation performance. Experiments on the BraTS2020 dataset for both super-resolution and downstream segmentation demonstrate that Nexus-INR outperforms state-of-the-art methods across various metrics.

View on arXiv
Comments on this paper