SlotMatch: Distilling Object-Centric Representations for Unsupervised Video Segmentation
- VOSOCL

Unsupervised video segmentation is a challenging computer vision task, especially due to the lack of supervisory signals coupled with the complexity of visual scenes. To overcome this challenge, state-of-the-art models based on slot attention often have to rely on large and computationally expensive neural architectures. To this end, we propose a simple knowledge distillation framework that effectively transfers object-centric representations to a lightweight student. The proposed framework, called SlotMatch, aligns corresponding teacher and student slots via the cosine similarity, requiring no additional distillation objectives or auxiliary supervision. The simplicity of SlotMatch is confirmed via theoretical and empirical evidence, both indicating that integrating additional losses is redundant. We conduct experiments on three datasets to compare the state-of-the-art teacher model, SlotContrast, with our distilled student. The results show that our student based on SlotMatch matches and even outperforms its teacher, while using 3.6x less parameters and running up to 2.7x faster. Moreover, our student surpasses all other state-of-the-art unsupervised video segmentation models.
View on arXiv