ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.03415
40
0

Learning Latent Representations for Image Translation using Frequency Distributed CycleGAN

5 August 2025
Shivangi Nigam
Adarsh Prasad Behera
Shekhar Verma
P. Nagabhushan
ArXiv (abs)PDFHTML
Main:11 Pages
12 Figures
Bibliography:2 Pages
4 Tables
Abstract

This paper presents Fd-CycleGAN, an image-to-image (I2I) translation framework that enhances latent representation learning to approximate real data distributions. Building upon the foundation of CycleGAN, our approach integrates Local Neighborhood Encoding (LNE) and frequency-aware supervision to capture fine-grained local pixel semantics while preserving structural coherence from the source domain. We employ distribution-based loss metrics, including KL/JS divergence and log-based similarity measures, to explicitly quantify the alignment between real and generated image distributions in both spatial and frequency domains. To validate the efficacy of Fd-CycleGAN, we conduct experiments on diverse datasets -- Horse2Zebra, Monet2Photo, and a synthetically augmented Strike-off dataset. Compared to baseline CycleGAN and other state-of-the-art methods, our approach demonstrates superior perceptual quality, faster convergence, and improved mode diversity, particularly in low-data regimes. By effectively capturing local and global distribution characteristics, Fd-CycleGAN achieves more visually coherent and semantically consistent translations. Our results suggest that frequency-guided latent learning significantly improves generalization in image translation tasks, with promising applications in document restoration, artistic style transfer, and medical image synthesis. We also provide comparative insights with diffusion-based generative models, highlighting the advantages of our lightweight adversarial approach in terms of training efficiency and qualitative output.

View on arXiv
Comments on this paper