ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.03579
211
0
v1v2 (latest)

Heterogeneity-Oblivious Robust Federated Learning

5 August 2025
Weiyao Zhang
Jinyang Li
Qi Song
Miao Wang
Chungang Lin
Haitong Luo
Xuying Meng
Yujun Zhang
    AAML
ArXiv (abs)PDFHTML
Main:9 Pages
9 Figures
Bibliography:1 Pages
4 Tables
Abstract

Federated Learning (FL) remains highly vulnerable to poisoning attacks, especially under real-world hyper-heterogeneity, where clients differ significantly in data distributions, communication capabilities, and model architectures. Such heterogeneity not only undermines the effectiveness of aggregation strategies but also makes attacks more difficult to detect. Furthermore, high-dimensional models expand the attack surface. To address these challenges, we propose Horus, a heterogeneity-oblivious robust FL framework centered on low-rank adaptations (LoRAs). Rather than aggregating full model parameters, Horus inserts LoRAs into empirically stable layers and aggregates only LoRAs to reduce the attack this http URL uncover a key empirical observation that the input projection (LoRA-A) is markedly more stable than the output projection (LoRA-B) under heterogeneity and poisoning. Leveraging this, we design a Heterogeneity-Oblivious Poisoning Score using the features from LoRA-A to filter poisoned clients. For the remaining benign clients, we propose projection-aware aggregation mechanism to preserve collaborative signals while suppressing drifts, which reweights client updates by consistency with the global directions. Extensive experiments across diverse datasets, model architectures, and attacks demonstrate that Horus consistently outperforms state-of-the-art baselines in both robustness and accuracy.

View on arXiv
Comments on this paper