107
v1v2 (latest)

Do Vision-Language Models Leak What They Learn? Adaptive Token-Weighted Model Inversion Attacks

Main:7 Pages
15 Figures
Bibliography:2 Pages
7 Tables
Appendix:6 Pages
Abstract

Model inversion (MI) attacks pose significant privacy risks by reconstructing private training data from trained neural networks. While prior studies have primarily examined unimodal deep networks, the vulnerability of vision-language models (VLMs) remains largely unexplored. In this work, we present the first systematic study of MI attacks on VLMs to understand their susceptibility to leaking private visual training data. Our work makes two main contributions. First, tailored to the token-generative nature of VLMs, we introduce a suite of token-based and sequence-based model inversion strategies, providing a comprehensive analysis of VLMs' vulnerability under different attack formulations. Second, based on the observation that tokens vary in their visual grounding, and hence their gradients differ in informativeness for image reconstruction, we propose Sequence-based Model Inversion with Adaptive Token Weighting (SMI-AW) as a novel MI for VLMs. SMI-AW dynamically reweights each token's loss gradient according to its visual grounding, enabling the optimization to focus on visually informative tokens and more effectively guide the reconstruction of private images. Through extensive experiments and human evaluations on a range of state-of-the-art VLMs across multiple datasets, we show that VLMs are susceptible to training data leakage. Human evaluation of the reconstructed images yields an attack accuracy of 61.21%, underscoring the severity of these privacy risks. Notably, we demonstrate that publicly released VLMs are vulnerable to such attacks. Our study highlights the urgent need for privacy safeguards as VLMs become increasingly deployed in sensitive domains such as healthcare and finance. Additional experiments are provided in Supp.

View on arXiv
Comments on this paper