ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.05409
80
0

From Detection to Correction: Backdoor-Resilient Face Recognition via Vision-Language Trigger Detection and Noise-Based Neutralization

7 August 2025
Farah Wahida
M. Chamikara
Yashothara Shanmugarasa
Mohan Baruwal Chhetri
Thilina Ranbaduge
Ibrahim Khalil
    AAML
ArXiv (abs)PDFHTML
Main:11 Pages
24 Figures
Bibliography:3 Pages
19 Tables
Appendix:5 Pages
Abstract

Biometric systems, such as face recognition systems powered by deep neural networks (DNNs), rely on large and highly sensitive datasets. Backdoor attacks can subvert these systems by manipulating the training process. By inserting a small trigger, such as a sticker, make-up, or patterned mask, into a few training images, an adversary can later present the same trigger during authentication to be falsely recognized as another individual, thereby gaining unauthorized access. Existing defense mechanisms against backdoor attacks still face challenges in precisely identifying and mitigating poisoned images without compromising data utility, which undermines the overall reliability of the system. We propose a novel and generalizable approach, TrueBiometric: Trustworthy Biometrics, which accurately detects poisoned images using a majority voting mechanism leveraging multiple state-of-the-art large vision language models. Once identified, poisoned samples are corrected using targeted and calibrated corrective noise. Our extensive empirical results demonstrate that TrueBiometric detects and corrects poisoned images with 100\% accuracy without compromising accuracy on clean images. Compared to existing state-of-the-art approaches, TrueBiometric offers a more practical, accurate, and effective solution for mitigating backdoor attacks in face recognition systems.

View on arXiv
Comments on this paper