ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.06571
80
4
v1v2v3 (latest)

IRL-VLA: Training an Vision-Language-Action Policy via Reward World Model

7 August 2025
Anqing Jiang
Yu Gao
Yiru Wang
Zhigang Sun
S. Wang
Yuwen Heng
Hao Sun
Shichen Tang
Lijuan Zhu
Jinhao Chai
Jijun Wang
Zichong Gu
Hao Jiang
Li Sun
ArXiv (abs)PDFHTML
Main:8 Pages
3 Figures
Bibliography:2 Pages
3 Tables
Abstract

Vision-Language-Action (VLA) models have demonstrated potential in autonomous driving. However, two critical challenges hinder their development: (1) Existing VLA architectures are typically based on imitation learning in open-loop setup which tends to capture the recorded behaviors in the dataset, leading to suboptimal and constrained performance, (2) Close-loop training relies heavily on high-fidelity sensor simulation, where domain gaps and computational inefficiencies pose significant barriers. In this paper, we introduce IRL-VLA, a novel close-loop Reinforcement Learning via \textbf{I}nverse \textbf{R}einforcement \textbf{L}earning reward world model with a self-built VLA approach. Our framework proceeds in a three-stage paradigm: In the first stage, we propose a VLA architecture and pretrain the VLA policy via imitation learning. In the second stage, we construct a lightweight reward world model via inverse reinforcement learning to enable efficient close-loop reward computation. To further enhance planning performance, finally, we design specialized reward world model guidence reinforcement learning via PPO(Proximal Policy Optimization) to effectively balance the safety incidents, comfortable driving, and traffic efficiency. Our approach achieves state-of-the-art performance in NAVSIM v2 end-to-end driving benchmark, 1st runner up in CVPR2025 Autonomous Grand Challenge. We hope that our framework will accelerate VLA research in close-loop autonomous driving.

View on arXiv
Comments on this paper