ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.06622
40
0

Learning to Forget with Information Divergence Reweighted Objectives for Noisy Labels

8 August 2025
Jeremiah Birrell
Reza Ebrahimi
    NoLa
ArXiv (abs)PDFHTMLGithub
Main:9 Pages
2 Figures
Bibliography:4 Pages
10 Tables
Appendix:13 Pages
Abstract

We introduce ANTIDOTE, a new class of objectives for learning under noisy labels which are defined in terms of a relaxation over an information-divergence neighborhood. Using convex duality, we provide a reformulation as an adversarial training method that has similar computational cost to training with standard cross-entropy loss. We show that our approach adaptively reduces the influence of the samples with noisy labels during learning, exhibiting a behavior that is analogous to forgetting those samples. ANTIDOTE is effective in practical environments where label noise is inherent in the training data or where an adversary can alter the training labels. Extensive empirical evaluations on different levels of symmetric, asymmetric, human annotation, and real-world label noise show that ANTIDOTE outperforms leading comparable losses in the field and enjoys a time complexity that is very close to that of the standard cross entropy loss.

View on arXiv
Comments on this paper