ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.06789
20
0

Label Inference Attacks against Federated Unlearning

9 August 2025
Wei Wang
Xiangyun Tang
Y. Wang
Yijing Lin
Tao Zhang
Meng Shen
Dusit Niyato
Liehuang Zhu
ArXiv (abs)PDFHTML
Main:14 Pages
2 Figures
Bibliography:2 Pages
3 Tables
Abstract

Federated Unlearning (FU) has emerged as a promising solution to respond to the right to be forgotten of clients, by allowing clients to erase their data from global models without compromising model performance. Unfortunately, researchers find that the parameter variations of models induced by FU expose clients' data information, enabling attackers to infer the label of unlearning data, while label inference attacks against FU remain unexplored. In this paper, we introduce and analyze a new privacy threat against FU and propose a novel label inference attack, ULIA, which can infer unlearning data labels across three FU levels. To address the unique challenges of inferring labels via the models variations, we design a gradient-label mapping mechanism in ULIA that establishes a relationship between gradient variations and unlearning labels, enabling inferring labels on accumulated model variations. We evaluate ULIA on both IID and non-IID settings. Experimental results show that in the IID setting, ULIA achieves a 100% Attack Success Rate (ASR) under both class-level and client-level unlearning. Even when only 1% of a user's local data is forgotten, ULIA still attains an ASR ranging from 93% to 62.3%.

View on arXiv
Comments on this paper