ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.06871
32
1

Sparsity-Driven Plasticity in Multi-Task Reinforcement Learning

9 August 2025
Aleksandar Todorov
Juan Cardenas-Cartagena
Rafael F. Cunha
Marco Zullich
Matthia Sabatelli
    CLL
ArXiv (abs)PDFHTMLGithub (2★)
Main:11 Pages
27 Figures
Bibliography:8 Pages
5 Tables
Appendix:17 Pages
Abstract

Plasticity loss, a diminishing capacity to adapt as training progresses, is a critical challenge in deep reinforcement learning. We examine this issue in multi-task reinforcement learning (MTRL), where higher representational flexibility is crucial for managing diverse and potentially conflicting task demands. We systematically explore how sparsification methods, particularly Gradual Magnitude Pruning (GMP) and Sparse Evolutionary Training (SET), enhance plasticity and consequently improve performance in MTRL agents. We evaluate these approaches across distinct MTRL architectures (shared backbone, Mixture of Experts, Mixture of Orthogonal Experts) on standardized MTRL benchmarks, comparing against dense baselines, and a comprehensive range of alternative plasticity-inducing or regularization methods. Our results demonstrate that both GMP and SET effectively mitigate key indicators of plasticity degradation, such as neuron dormancy and representational collapse. These plasticity improvements often correlate with enhanced multi-task performance, with sparse agents frequently outperforming dense counterparts and achieving competitive results against explicit plasticity interventions. Our findings offer insights into the interplay between plasticity, network sparsity, and MTRL designs, highlighting dynamic sparsification as a robust but context-sensitive tool for developing more adaptable MTRL systems.

View on arXiv
Comments on this paper