96
v1v2v3v4 (latest)

WeatherDiffusion: Controllable Weather Editing in Intrinsic Space

Main:8 Pages
13 Figures
Bibliography:2 Pages
3 Tables
Abstract

We present WeatherDiffusion, a diffusion-based framework for controllable weather editing in intrinsic space. Our framework includes two components based on diffusion priors: an inverse renderer that estimates material properties, scene geometry, and lighting as intrinsic maps from an input image, and a forward renderer that utilizes these geometry and material maps along with a text prompt that describes specific weather conditions to generate a final image. The intrinsic maps enhance controllability compared to traditional pixel-space editing approaches. We propose an intrinsic map-aware attention mechanism that improves spatial correspondence and decomposition quality in large outdoor scenes. For forward rendering, we leverage CLIP-space interpolation of weather prompts to achieve fine-grained weather control. We also introduce a synthetic and a real-world dataset, containing 38k and 18k images under various weather conditions, each with intrinsic map annotations. WeatherDiffusion outperforms state-of-the-art pixel-space editing approaches, weather restoration methods, and rendering-based methods, showing promise for downstream tasks such as autonomous driving, enhancing the robustness of detection and segmentation in challenging weather scenarios.

View on arXiv
Comments on this paper