ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.07566
38
2

Feedback Control of a Single-Tail Bioinspired 59-mg Swimmer

11 August 2025
Conor K. Trygstad
Cody R. Longwell
Francisco M. F. R. Gonçalves
Elijah K. Blankenship
N. O. Pérez-Arancibia
ArXiv (abs)PDFHTML
9 Figures
Appendix:8 Pages
Abstract

We present an evolved steerable version of the single-tail Fish-&-Ribbon-Inspired Small Swimming Harmonic roBot (FRISSHBot), a 59-mg biologically inspired swimmer, which is driven by a new shape-memory alloy (SMA)-based bimorph actuator. The new FRISSHBot is controllable in the two-dimensional (2D) space, which enabled the first demonstration of feedback-controlled trajectory tracking of a single-tail aquatic robot with onboard actuation at the subgram scale. These new capabilities are the result of a physics-informed design with an enlarged head and shortened tail relative to those of the original platform. Enhanced by its design, this new platform achieves forward swimming speeds of up to 13.6 mm/s (0.38 Bl/s), which is over four times that of the original platform. Furthermore, when following 2D references in closed loop, the tested FRISSHBot prototype attains forward swimming speeds of up to 9.1 mm/s, root-mean-square (RMS) tracking errors as low as 2.6 mm, turning rates of up to 13.1 °/s, and turning radii as small as 10 mm.

View on arXiv
Comments on this paper