ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.07713
155
0

Detecting Mislabeled and Corrupted Data via Pointwise Mutual Information

11 August 2025
Jinghan Yang
Jiayu Weng
    NoLa
ArXiv (abs)PDFHTML
Main:5 Pages
5 Figures
Bibliography:3 Pages
Abstract

Deep neural networks can memorize corrupted labels, making data quality critical for model performance, yet real-world datasets are frequently compromised by both label noise and input noise. This paper proposes a mutual information-based framework for data selection under hybrid noise scenarios that quantifies statistical dependencies between inputs and labels. We compute each sample's pointwise contribution to the overall mutual information and find that lower contributions indicate noisy or mislabeled instances. Empirical validation on MNIST with different synthetic noise settings demonstrates that the method effectively filters low-quality samples. Under label corruption, training on high-MI samples improves classification accuracy by up to 15\% compared to random sampling. Furthermore, the method exhibits robustness to benign input modifications, preserving semantically valid data while filtering truly corrupted samples.

View on arXiv
Comments on this paper