66
v1v2 (latest)

Understanding Syntactic Generalization in Structure-inducing Language Models

Main:14 Pages
8 Figures
Bibliography:4 Pages
16 Tables
Appendix:6 Pages
Abstract

Structure-inducing Language Models (SiLM) are trained on a self-supervised language modeling task, and induce a hierarchical sentence representation as a byproduct when processing an input. SiLMs couple strong syntactic generalization behavior with competitive performance on various NLP tasks, but many of their basic properties are yet underexplored. In this work, we train three different SiLM architectures from scratch: Structformer (Shen et al., 2021), UDGN (Shen et al., 2022), and GPST (Hu et al., 2024b). We train these architectures on both natural language (English, German, and Chinese) corpora and synthetic bracketing expressions. The models are then evaluated with respect to (i) properties of the induced syntactic representations (ii) performance on grammaticality judgment tasks, and (iii) training dynamics. We find that none of the three architectures dominates across all evaluation metrics. However, there are significant differences, in particular with respect to the induced syntactic representations. The Generative Pretrained Structured Transformer (GPST; Hu et al. 2024) performs most consistently across evaluation settings, and outperforms the other models on long-distance dependencies in bracketing expressions. Furthermore, our study shows that small models trained on large amounts of synthetic data provide a useful testbed for evaluating basic model properties.

View on arXiv
Comments on this paper