ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.08606
164
2
v1v2v3 (latest)

Distributed optimization: designed for federated learning

12 August 2025
Wenyou Guo
Ting Qu
Chunrong Pan
George Q. Huang
    FedML
ArXiv (abs)PDFHTML
Main:13 Pages
6 Figures
Bibliography:2 Pages
Appendix:1 Pages
Abstract

Federated learning (FL), as a distributed collaborative machine learning (ML) framework under privacy-preserving constraints, has garnered increasing research attention in cross-organizational data collaboration scenarios. This paper proposes a class of distributed optimization algorithms based on the augmented Lagrangian technique, designed to accommodate diverse communication topologies in both centralized and decentralized FL settings. Furthermore, we develop multiple termination criteria and parameter update mechanisms to enhance computational efficiency, accompanied by rigorous theoretical guarantees of convergence. By generalizing the augmented Lagrangian relaxation through the incorporation of proximal relaxation and quadratic approximation, our framework systematically recovers a broad of classical unconstrained optimization methods, including proximal algorithm, classic gradient descent, and stochastic gradient descent, among others. Notably, the convergence properties of these methods can be naturally derived within the proposed theoretical framework. Numerical experiments demonstrate that the proposed algorithm exhibits strong performance in large-scale settings with significant statistical heterogeneity across clients.

View on arXiv
Comments on this paper