ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.08863
28
0

Flow Battery Manifold Design with Heterogeneous Inputs Through Generative Adversarial Neural Networks

12 August 2025
Eric Seng
Hugh O'Connor
Adam Boyce
Josh J. Bailey
Anton van Beek
    AI4CE
ArXiv (abs)PDFHTML
Main:24 Pages
8 Figures
Bibliography:6 Pages
3 Tables
Abstract

Generative machine learning has emerged as a powerful tool for design representation and exploration. However, its application is often constrained by the need for large datasets of existing designs and the lack of interpretability about what features drive optimality. To address these challenges, we introduce a systematic framework for constructing training datasets tailored to generative models and demonstrate how these models can be leveraged for interpretable design. The novelty of this work is twofold: (i) we present a systematic framework for generating archetypes with internally homogeneous but mutually heterogeneous inputs that can be used to generate a training dataset, and (ii) we show how integrating generative models with Bayesian optimization can enhance the interpretability of the latent space of admissible designs. These findings are validated by using the framework to design a flow battery manifold, demonstrating that it effectively captures the space of feasible designs, including novel configurations while enabling efficient exploration. This work broadens the applicability of generative machine-learning models in system designs by enhancing quality and reliability.

View on arXiv
Comments on this paper