ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.09174
96
0

FedMP: Tackling Medical Feature Heterogeneity in Federated Learning from a Manifold Perspective

7 August 2025
Zhekai Zhou
Shudong Liu
Zhaokun Zhou
Yang Liu
Qiang Yang
Yuesheng Zhu
Guibo Luo
ArXiv (abs)PDFHTML
Main:7 Pages
8 Figures
Bibliography:2 Pages
5 Tables
Abstract

Federated learning (FL) is a decentralized machine learning paradigm in which multiple clients collaboratively train a shared model without sharing their local private data. However, real-world applications of FL frequently encounter challenges arising from the non-identically and independently distributed (non-IID) local datasets across participating clients, which is particularly pronounced in the field of medical imaging, where shifts in image feature distributions significantly hinder the global model's convergence and performance. To address this challenge, we propose FedMP, a novel method designed to enhance FL under non-IID scenarios. FedMP employs stochastic feature manifold completion to enrich the training space of individual client classifiers, and leverages class-prototypes to guide the alignment of feature manifolds across clients within semantically consistent subspaces, facilitating the construction of more distinct decision boundaries. We validate the effectiveness of FedMP on multiple medical imaging datasets, including those with real-world multi-center distributions, as well as on a multi-domain natural image dataset. The experimental results demonstrate that FedMP outperforms existing FL algorithms. Additionally, we analyze the impact of manifold dimensionality, communication efficiency, and privacy implications of feature exposure in our method.

View on arXiv
Comments on this paper