ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.09466
37
0
v1v2 (latest)

Event-driven Robust Fitting on Neuromorphic Hardware

13 August 2025
Tam Ngoc-Bang Nguyen
Anh-Dzung Doan
Yong Deng
Tat-Jun Chin
ArXiv (abs)PDFHTMLGithub (647★)
Main:11 Pages
8 Figures
Bibliography:1 Pages
1 Tables
Appendix:1 Pages
Abstract

Robust fitting of geometric models is a fundamental task in many computer vision pipelines. Numerous innovations have been produced on the topic, from improving the efficiency and accuracy of random sampling heuristics to generating novel theoretical insights that underpin new approaches with mathematical guarantees. However, one aspect of robust fitting that has received little attention is energy efficiency. This performance metric has become critical as high energy consumption is a growing concern for AI adoption. In this paper, we explore energy-efficient robust fitting via the neuromorphic computing paradigm. Specifically, we designed a novel spiking neural network for robust fitting on real neuromorphic hardware, the Intel Loihi 2. Enabling this are novel event-driven formulations of model estimation that allow robust fitting to be implemented in the unique architecture of Loihi 2, and algorithmic strategies to alleviate the current limited precision and instruction set of the hardware. Results show that our neuromorphic robust fitting consumes only a fraction (15%) of the energy required to run the established robust fitting algorithm on a standard CPU to equivalent accuracy.

View on arXiv
Comments on this paper