ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.09626
131
0
v1v2 (latest)

Semantic-aware DropSplat: Adaptive Pruning of Redundant Gaussians for 3D Aerial-View Segmentation

13 August 2025
Xu Tang
Junan Jia
Yijing Wang
Jingjing Ma
Xiangrong Zhang
ArXiv (abs)PDFHTML
Main:7 Pages
4 Figures
Bibliography:1 Pages
5 Tables
Appendix:1 Pages
Abstract

In the task of 3D Aerial-view Scene Semantic Segmentation (3D-AVS-SS), traditional methods struggle to address semantic ambiguity caused by scale variations and structural occlusions in aerial images. This limits their segmentation accuracy and consistency. To tackle these challenges, we propose a novel 3D-AVS-SS approach named SAD-Splat. Our method introduces a Gaussian point drop module, which integrates semantic confidence estimation with a learnable sparsity mechanism based on the Hard Concrete distribution. This module effectively eliminates redundant and semantically ambiguous Gaussian points, enhancing both segmentation performance and representation compactness. Furthermore, SAD-Splat incorporates a high-confidence pseudo-label generation pipeline. It leverages 2D foundation models to enhance supervision when ground-truth labels are limited, thereby further improving segmentation accuracy. To advance research in this domain, we introduce a challenging benchmark dataset: 3D Aerial Semantic (3D-AS), which encompasses diverse real-world aerial scenes with sparse annotations. Experimental results demonstrate that SAD-Splat achieves an excellent balance between segmentation accuracy and representation compactness. It offers an efficient and scalable solution for 3D aerial scene understanding.

View on arXiv
Comments on this paper