ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.09691
96
0

PaCo-FR: Patch-Pixel Aligned End-to-End Codebook Learning for Facial Representation Pre-training

13 August 2025
Yin Xie
Zhichao Chen
Xiaoze Yu
Yongle Zhao
Xiang An
Kaicheng Yang
Zimin Ran
Jia Guo
Ziyong Feng
Jiankang Deng
ArXiv (abs)PDFHTML
Main:8 Pages
4 Figures
Bibliography:3 Pages
8 Tables
Abstract

Facial representation pre-training is crucial for tasks like facial recognition, expression analysis, and virtual reality. However, existing methods face three key challenges: (1) failing to capture distinct facial features and fine-grained semantics, (2) ignoring the spatial structure inherent to facial anatomy, and (3) inefficiently utilizing limited labeled data. To overcome these, we introduce PaCo-FR, an unsupervised framework that combines masked image modeling with patch-pixel alignment. Our approach integrates three innovative components: (1) a structured masking strategy that preserves spatial coherence by aligning with semantically meaningful facial regions, (2) a novel patch-based codebook that enhances feature discrimination with multiple candidate tokens, and (3) spatial consistency constraints that preserve geometric relationships between facial components. PaCo-FR achieves state-of-the-art performance across several facial analysis tasks with just 2 million unlabeled images for pre-training. Our method demonstrates significant improvements, particularly in scenarios with varying poses, occlusions, and lighting conditions. We believe this work advances facial representation learning and offers a scalable, efficient solution that reduces reliance on expensive annotated datasets, driving more effective facial analysis systems.

View on arXiv
Comments on this paper