ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.09697
42
0

Combating Noisy Labels via Dynamic Connection Masking

13 August 2025
Xinlei Zhang
Fan Liu
Chuanyi Zhang
Fan Cheng
Yuhui Zheng
    NoLa
ArXiv (abs)PDFHTML
Main:7 Pages
6 Figures
Bibliography:2 Pages
10 Tables
Appendix:4 Pages
Abstract

Noisy labels are inevitable in real-world scenarios. Due to the strong capacity of deep neural networks to memorize corrupted labels, these noisy labels can cause significant performance degradation. Existing research on mitigating the negative effects of noisy labels has mainly focused on robust loss functions and sample selection, with comparatively limited exploration of regularization in model architecture. Inspired by the sparsity regularization used in Kolmogorov-Arnold Networks (KANs), we propose a Dynamic Connection Masking (DCM) mechanism for both Multi-Layer Perceptron Networks (MLPs) and KANs to enhance the robustness of classifiers against noisy labels. The mechanism can adaptively mask less important edges during training by evaluating their information-carrying capacity. Through theoretical analysis, we demonstrate its efficiency in reducing gradient error. Our approach can be seamlessly integrated into various noise-robust training methods to build more robust deep networks, including robust loss functions, sample selection strategies, and regularization techniques. Extensive experiments on both synthetic and real-world benchmarks demonstrate that our method consistently outperforms state-of-the-art (SOTA) approaches. Furthermore, we are also the first to investigate KANs as classifiers against noisy labels, revealing their superior noise robustness over MLPs in real-world noisy scenarios. Our code will soon be publicly available.

View on arXiv
Comments on this paper