ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.10782
79
2

Dimension-Free Bounds for Generalized First-Order Methods via Gaussian Coupling

14 August 2025
Galen Reeves
ArXiv (abs)PDFHTML
Main:23 Pages
1 Figures
Bibliography:4 Pages
Abstract

We establish non-asymptotic bounds on the finite-sample behavior of generalized first-order iterative algorithms -- including gradient-based optimization methods and approximate message passing (AMP) -- with Gaussian data matrices and full-memory, non-separable nonlinearities. The central result constructs an explicit coupling between the iterates of a generalized first-order method and a conditionally Gaussian process whose covariance evolves deterministically via a finite-dimensional state evolution recursion. This coupling yields tight, dimension-free bounds under mild Lipschitz and moment-matching conditions. Our analysis departs from classical inductive AMP proofs by employing a direct comparison between the generalized first-order method and the conditionally Gaussian comparison process. This approach provides a unified derivation of AMP theory for Gaussian matrices without relying on separability or asymptotics. A complementary lower bound on the Wasserstein distance demonstrates the sharpness of our upper bounds.

View on arXiv
Comments on this paper