ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.11173
98
0

Exploring the Tradeoff Between Diversity and Discrimination for Continuous Category Discovery

15 August 2025
Ruobing Jiang
Yang Liu
Haobing Liu
Yanwei Yu
Chunyang Wang
    CLL
ArXiv (abs)PDFHTMLGithub
Main:9 Pages
7 Figures
Bibliography:1 Pages
10 Tables
Abstract

Continuous category discovery (CCD) aims to automatically discover novel categories in continuously arriving unlabeled data. This is a challenging problem considering that there is no number of categories and labels in the newly arrived data, while also needing to mitigate catastrophic forgetting. Most CCD methods cannot handle the contradiction between novel class discovery and classification well. They are also prone to accumulate errors in the process of gradually discovering novel classes. Moreover, most of them use knowledge distillation and data replay to prevent forgetting, occupying more storage space. To address these limitations, we propose Independence-based Diversity and Orthogonality-based Discrimination (IDOD). IDOD mainly includes independent enrichment of diversity module, joint discovery of novelty module, and continuous increment by orthogonality module. In independent enrichment, the backbone is trained separately using contrastive loss to avoid it focusing only on features for classification. Joint discovery transforms multi-stage novel class discovery into single-stage, reducing error accumulation impact. Continuous increment by orthogonality module generates mutually orthogonal prototypes for classification and prevents forgetting with lower space overhead via representative representation replay. Experimental results show that on challenging fine-grained datasets, our method outperforms the state-of-the-art methods.

View on arXiv
Comments on this paper