ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.11520
4
0

A Comparative Study of Floating-Base Space Parameterizations for Agile Whole-Body Motion Planning

15 August 2025
Evangelos Tsiatsianas
Chairi Kiourt
Konstantinos Chatzilygeroudis
ArXiv (abs)PDFHTML
Main:5 Pages
3 Figures
Bibliography:2 Pages
6 Tables
Appendix:1 Pages
Abstract

Automatically generating agile whole-body motions for legged and humanoid robots remains a fundamental challenge in robotics. While numerous trajectory optimization approaches have been proposed, there is no clear guideline on how the choice of floating-base space parameterization affects performance, especially for agile behaviors involving complex contact dynamics. In this paper, we present a comparative study of different parameterizations for direct transcription-based trajectory optimization of agile motions in legged systems. We systematically evaluate several common choices under identical optimization settings to ensure a fair comparison. Furthermore, we introduce a novel formulation based on the tangent space of SE(3) for representing the robot's floating-base pose, which, to our knowledge, has not received attention from the literature. This approach enables the use of mature off-the-shelf numerical solvers without requiring specialized manifold optimization techniques. We hope that our experiments and analysis will provide meaningful insights for selecting the appropriate floating-based representation for agile whole-body motion generation.

View on arXiv
Comments on this paper