172
v1v2 (latest)

Explainable Deep Neural Network for Multimodal ECG Signals: Intermediate vs Late Fusion

Main:45 Pages
36 Figures
30 Tables
Abstract

The limitations of unimodal deep learning models, particularly their tendency to overfit and limited generalizability, have renewed interest in multimodal fusion strategies. Multimodal deep neural networks (MDNN) have the capability of integrating diverse data domains and offer a promising solution for robust and accurate predictions. However, the optimal fusion strategy, intermediate fusion (feature-level) versus late fusion (decision-level) remains insufficiently examined, especially in high-stakes clinical contexts such as ECG-based cardiovascular disease (CVD) classification. This study investigates the comparative effectiveness of intermediate and late fusion strategies using ECG signals across three domains: time, frequency, and time-frequency. A series of experiments were conducted to identify the highest-performing fusion architecture. Results demonstrate that intermediate fusion consistently outperformed late fusion, achieving a peak accuracy of 97 percent, with Cohen's d > 0.8 relative to standalone models and d = 0.40 compared to late fusion. Interpretability analyses using saliency maps reveal that both models align with the discretized ECG signals. Statistical dependency between the discretized ECG signals and corresponding saliency maps for each class was confirmed using Mutual Information (MI). The proposed ECG domain-based multimodal model offers superior predictive capability and enhanced explainability, crucial attributes in medical AI applications, surpassing state-of-the-art models.

View on arXiv
Comments on this paper