113

Large Kernel Modulation Network for Efficient Image Super-Resolution

Main:8 Pages
9 Figures
Bibliography:2 Pages
Abstract

Image super-resolution (SR) in resource-constrained scenarios demands lightweight models balancing performance and latency. Convolutional neural networks (CNNs) offer low latency but lack non-local feature capture, while Transformers excel at non-local modeling yet suffer slow inference. To address this trade-off, we propose the Large Kernel Modulation Network (LKMN), a pure CNN-based model. LKMN has two core components: Enhanced Partial Large Kernel Block (EPLKB) and Cross-Gate Feed-Forward Network (CGFN). The EPLKB utilizes channel shuffle to boost inter-channel interaction, incorporates channel attention to focus on key information, and applies large kernel strip convolutions on partial channels for non-local feature extraction with reduced complexity. The CGFN dynamically adjusts discrepancies between input, local, and non-local features via a learnable scaling factor, then employs a cross-gate strategy to modulate and fuse these features, enhancing their complementarity. Extensive experiments demonstrate that our method outperforms existing state-of-the-art (SOTA) lightweight SR models while balancing quality and efficiency. Specifically, LKMN-L achieves 0.23 dB PSNR improvement over DAT-light on the Manga109 dataset at ×\times4 upscale, with nearly ×\times4.8 times faster. Codes are in the supplementary materials. The code is available atthis https URL.

View on arXiv
Comments on this paper