16

Learning Marked Temporal Point Process Explanations based on Counterfactual and Factual Reasoning

Main:7 Pages
8 Figures
Bibliography:1 Pages
9 Tables
Appendix:2 Pages
Abstract

Neural network-based Marked Temporal Point Process (MTPP) models have been widely adopted to model event sequences in high-stakes applications, raising concerns about the trustworthiness of outputs from these models. This study focuses on Explanation for MTPP, aiming to identify the minimal and rational explanation, that is, the minimum subset of events in history, based on which the prediction accuracy of MTPP matches that based on full history to a great extent and better than that based on the complement of the subset. This study finds that directly defining Explanation for MTPP as counterfactual explanation or factual explanation can result in irrational explanations. To address this issue, we define Explanation for MTPP as a combination of counterfactual explanation and factual explanation. This study proposes Counterfactual and Factual Explainer for MTPP (CFF) to solve Explanation for MTPP with a series of deliberately designed techniques. Experiments demonstrate the correctness and superiority of CFF over baselines regarding explanation quality and processing efficiency.

View on arXiv
Comments on this paper