ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.12947
85
0

Shapley Values: Paired-Sampling Approximations

18 August 2025
Michael Mayer
Mario V. Wüthrich
    TDIFAtt
ArXiv (abs)PDFHTML
Main:16 Pages
6 Figures
Bibliography:2 Pages
2 Tables
Appendix:2 Pages
Abstract

Originally introduced in cooperative game theory, Shapley values have become a very popular tool to explain machine learning predictions. Based on Shapley's fairness axioms, every input (feature component) gets a credit how it contributes to an output (prediction). These credits are then used to explain the prediction. The only limitation in computing the Shapley values (credits) for many different predictions is of computational nature. There are two popular sampling approximations, sampling KernelSHAP and sampling PermutationSHAP. Our first novel contributions are asymptotic normality results for these sampling approximations. Next, we show that the paired-sampling approaches provide exact results in case of interactions being of maximal order two. Furthermore, the paired-sampling PermutationSHAP possesses the additive recovery property, whereas its kernel counterpart does not.

View on arXiv
Comments on this paper