ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.13101
130
0
v1v2 (latest)

Real-Time Beach Litter Detection and Counting: A Comparative Analysis of RT-DETR Model Variants

18 August 2025
Miftahul Huda
Arsyiah Azahra
Putri Maulida Chairani
Dimas Rizky Ramadhani
Nabila Azhari
Ade Lailani
ArXiv (abs)PDFHTMLGithub (45392★)
Main:7 Pages
5 Figures
Bibliography:1 Pages
3 Tables
Abstract

Coastal pollution is a pressing global environmental issue, necessitating scalable and automated solutions for monitoring and management. This study investigates the efficacy of the Real-Time Detection Transformer (RT-DETR), a state-of-the-art, end-to-end object detection model, for the automated detection and counting of beach litter. A rigorous comparative analysis is conducted between two model variants, RT-DETR-Large (RT-DETR-L) and RT-DETR-Extra-Large (RT-DETR-X), trained on a publicly available dataset of coastal debris. The evaluation reveals that the RT-DETR-X model achieves marginally superior accuracy, with a mean Average Precision at 50\% IoU (mAP@50) of 0.816 and a mAP@50-95 of 0.612, compared to the RT-DETR-L model's 0.810 and 0.606, respectively. However, this minor performance gain is realized at a significant computational cost; the RT-DETR-L model demonstrates a substantially faster inference time of 20.1 ms versus 34.5 ms for the RT-DETR-X. The findings suggest that the RT-DETR-L model offers a more practical and efficient solution for real-time, in-field deployment due to its superior balance of processing speed and detection accuracy. This research provides valuable insights into the application of advanced Transformer-based detectors for environmental conservation, highlighting the critical trade-offs between model complexity and operational viability.

View on arXiv
Comments on this paper