ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.14045
182
0

From Image Captioning to Visual Storytelling

31 July 2025
Admitos Passadakis
Yingjin Song
Albert Gatt
    DiffM
ArXiv (abs)PDFHTML
Main:11 Pages
5 Figures
Bibliography:4 Pages
7 Tables
Appendix:1 Pages
Abstract

Visual Storytelling is a challenging multimodal task between Vision & Language, where the purpose is to generate a story for a stream of images. Its difficulty lies on the fact that the story should be both grounded to the image sequence but also narrative and coherent. The aim of this work is to balance between these aspects, by treating Visual Storytelling as a superset of Image Captioning, an approach quite different compared to most of prior relevant studies. This means that we firstly employ a vision-to-language model for obtaining captions of the input images, and then, these captions are transformed into coherent narratives using language-to-language methods. Our multifarious evaluation shows that integrating captioning and storytelling under a unified framework, has a positive impact on the quality of the produced stories. In addition, compared to numerous previous studies, this approach accelerates training time and makes our framework readily reusable and reproducible by anyone interested. Lastly, we propose a new metric/tool, named ideality, that can be used to simulate how far some results are from an oracle model, and we apply it to emulate human-likeness in visual storytelling.

View on arXiv
Comments on this paper