125

Implicit Hypergraph Neural Network

Main:8 Pages
5 Figures
Bibliography:2 Pages
5 Tables
Abstract

Hypergraphs offer a generalized framework for capturing high-order relationships between entities and have been widely applied in various domains, including healthcare, social networks, and bioinformatics. Hypergraph neural networks, which rely on message-passing between nodes over hyperedges to learn latent representations, have emerged as the method of choice for predictive tasks in many of these domains. These approaches typically perform only a small number of message-passing rounds to learn the representations, which they then utilize for predictions. The small number of message-passing rounds comes at a cost, as the representations only capture local information and forego long-range high-order dependencies. However, as we demonstrate, blindly increasing the message-passing rounds to capture long-range dependency also degrades the performance of hyper-graph neural networks.

View on arXiv
Comments on this paper