ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.14910
36
1

Closing the Performance Gap in Generative Recommenders with Collaborative Tokenization and Efficient Modeling

12 August 2025
Simon Lepage
Jérémie Mary
David Picard
ArXiv (abs)PDFHTML
Main:10 Pages
11 Figures
Bibliography:3 Pages
12 Tables
Appendix:1 Pages
Abstract

Recent work has explored generative recommender systems as an alternative to traditional ID-based models, reframing item recommendation as a sequence generation task over discrete item tokens. While promising, such methods often underperform in practice compared to well-tuned ID-based baselines like SASRec. In this paper, we identify two key limitations holding back generative approaches: the lack of collaborative signal in item tokenization, and inefficiencies in the commonly used encoder-decoder architecture. To address these issues, we introduce COSETTE, a contrastive tokenization method that integrates collaborative information directly into the learned item representations, jointly optimizing for both content reconstruction and recommendation relevance. Additionally, we propose MARIUS, a lightweight, audio-inspired generative model that decouples timeline modeling from item decoding. MARIUS reduces inference cost while improving recommendation accuracy. Experiments on standard sequential recommendation benchmarks show that our approach narrows, or even eliminates, the performance gap between generative and modern ID-based models, while retaining the benefits of the generative paradigm.

View on arXiv
Comments on this paper