96

LLM-Driven Self-Refinement for Embodied Drone Task Planning

Main:10 Pages
8 Figures
7 Tables
Appendix:5 Pages
Abstract

We introduce SRDrone, a novel system designed for self-refinement task planning in industrial-grade embodied drones. SRDrone incorporates two key technical contributions: First, it employs a continuous state evaluation methodology to robustly and accurately determine task outcomes and provide explanatory feedback. This approach supersedes conventional reliance on single-frame final-state assessment for continuous, dynamic drone operations. Second, SRDrone implements a hierarchical Behavior Tree (BT) modification model. This model integrates multi-level BT plan analysis with a constrained strategy space to enable structured reflective learning from experience. Experimental results demonstrate that SRDrone achieves a 44.87% improvement in Success Rate (SR) over baseline methods. Furthermore, real-world deployment utilizing an experience base optimized through iterative self-refinement attains a 96.25% SR. By embedding adaptive task refinement capabilities within an industrial-grade BT planning framework, SRDrone effectively integrates the general reasoning intelligence of Large Language Models (LLMs) with the stringent physical execution constraints inherent to embodied drones. Code is available atthis https URL.

View on arXiv
Comments on this paper