ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.15737
44
0

Probability Density from Latent Diffusion Models for Out-of-Distribution Detection

21 August 2025
Joonas Järve
Karl Kaspar Haavel
Meelis Kull
ArXiv (abs)PDFHTMLGithub (984★)
Main:5 Pages
12 Figures
Bibliography:3 Pages
9 Tables
Appendix:7 Pages
Abstract

Despite rapid advances in AI, safety remains the main bottleneck to deploying machine-learning systems. A critical safety component is out-of-distribution detection: given an input, decide whether it comes from the same distribution as the training data. In generative models, the most natural OOD score is the data likelihood. Actually, under the assumption of uniformly distributed OOD data, the likelihood is even the optimal OOD detector, as we show in this work. However, earlier work reported that likelihood often fails in practice, raising doubts about its usefulness. We explore whether, in practice, the representation space also suffers from the inability to learn good density estimation for OOD detection, or if it is merely a problem of the pixel space typically used in generative models. To test this, we trained a Variational Diffusion Model not on images, but on the representation space of a pre-trained ResNet-18 to assess the performance of our likelihood-based detector in comparison to state-of-the-art methods from the OpenOOD suite.

View on arXiv
Comments on this paper